469 research outputs found

    Fuzzy intelligence approach for modeling the migration of contaminants ina reservoir affected by AMD pollution

    Get PDF
    The Sancho Reservoir, located in the Huelva province (SW Spain), is supplied by the Meca River, which receives water contaminated by mining activities in Tharsis. This study focused on determining the relationship that temperature, pH, and electrical conductivity (EC) had with rainfall. The temperature, pH, and EC were simultaneously measured every 30 min by two probes suspended in the Sancho Reservoir. It was anticipated that the use of fuzzy logic and data mining would lead to a model that would show how the contaminant load evolved over space and time. Similar results were obtained for the two locations, except that the parameters had more outliers near the dam due to the greater distance from the contamination source. As expected, higher pH corresponded with lower EC, since, in the absence of chloride, sulphate was the principal anion. The dependency relationship of the variables as well as the cause–effect relationship with the rate of rainfall was more evident in the up-gradient sampling location than near the dam due to the different residence time and the transit time between the two points

    Hybrid off-river augmentation system as an alternative raw water resource: the hydrogeochemistry of abandoned mining ponds

    Get PDF
    The use of water from abandoned mining ponds under a hybrid off-river augmentation system (HORAS) has been initiated as an alternative water resource for raw water. However, it raises the questions over the safety of the use of such waters. In this study, the hydrogeochemical analysis of the waters is presented to assess the degree to which the water has been contaminated. Comparisons were made between sampling sites, i.e. abandoned mining ponds, active sand mining ponds and the receiving streams within Bestari Jaya, Selangor River basin. The aqueous geochemistry analysis showed different hydrochemical signatures of major elements between sites, indicating different sources of minerals in the water. Discharges from the sand mining ponds were found to contain elevated availability of dissolved concentrations of iron, manganese, lead, copper and zinc, among others. However, the quality of the water (from the main river) that is supplied for potable water consumption is at a satisfactory level despite being partly sourced from the abandoned mining ponds. In fact, all the metal concentrations detected were well below the Malaysia Ministry of Health guideline limits for untreated raw water. In addition, the results of the geochemical index analysis (i.e. geoaccumulation index, enrichment factor and modified contamination factor) showed that the rivers and abandoned mining ponds were generally unpolluted with respect to the metals found in sediments

    Mine closure of pit lakes as terminal sinks: best available practice when options are limited?

    Get PDF
    In an arid climate, pit lake evaporation rates can exceed influx rates, causing the lake to function as a hydraulic terminal sink, with water levels in the pit remaining below surrounding groundwater levels. We present case studies from Western Australia for two mines nearing closure. At the first site, modelling indicates that waste dump covers for the potentially acid forming (PAF) material would not be successful over the long term (1,000 years or more). The second site is a case study where PAF management is limited by the current waste rock dump location and suitable cover materials. Pit lake water balance modelling using Goldsim software indicated that both pit lakes would function as hydraulic terminal sinks if not backfilled above long-term equilibrium water levels. Poor water quality will likely develop as evapoconcentration increases contaminant concentrations, providing a potential threat to local wildlife. Even so, the best current opportunity to limit the risk of contaminant migration and protect regional groundwater environments may be to limit backfill and intentionally produce a terminal sink pit lake

    Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom

    Get PDF
    Pilot heat pump systems have been installed at two former collieries in Yorkshire/Derbyshire, England, to extract heat from mine water. The installations represent three fundamental configurations of heat exchanger. At Caphouse Colliery, mine water is pumped through a heat exchanger coupled to a heat pump and then discharged to waste (an open-loop heat exchange system). The system performs with high thermal efficiency, but the drawbacks are: (1) it can only be operated when mine water is being actively pumped from the colliery shaft for the purposes of regional water-level management, and (2) the fact that the water is partially oxygenated means that iron oxyhydroxide precipitation occurs, necessitating regular removal of filters for cleaning. At Markham Colliery, near Bolsover, a small amount of mine water is pumped from depth in a flooded shaft, circulated through a heat exchanger coupled to a heat pump and then returned to the same mine shaft at a slightly different depth (a standing column arrangement). This system’s fundamental thermal efficiency is negatively impacted by the electrical power required to run the shaft submersible pump, but clogging issues are not significant. In the third system, at Caphouse, a heat exchanger is submerged in a mine water treatment pond (a closed-loop system). This can be run at any time, irrespective of mine pumping regime, and being a closed-loop system, is not susceptible to clogging issues
    corecore